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Abstract

Recently, text-to-image diffusion models have shown remarkable capabilities in
creating realistic images from natural language prompts. However, few works have
explored using these models for semantic localization or grounding. In this work,
we explore how an off-the-shelf text-to-image diffusion model, trained without
exposure to localization information, can ground various semantic phrases without
segmentation-specific re-training. We introduce an inference time optimization
process capable of generating segmentation masks conditioned on natural language
prompts. Our proposal, Peekaboo, is a first-of-its-kind zero-shot, open-vocabulary,
unsupervised semantic grounding technique leveraging diffusion models without
any training. We evaluate Peekaboo on the Pascal VOC dataset for unsupervised
semantic segmentation and the RefCOCO dataset for referring segmentation, show-
ing results competitive with promising results. We also demonstrate how Peekaboo
can be used to generate images with transparency, even though the underlying
diffusion model was only trained on RGB images - which to our knowledge we are
the first to attempt.

1 Introduction
Image segmentation, a key computer vision task, involves dividing an image into meaningful spatial
regions. Semantic segmentation assigns pre-defined labels [1], while referring segmentation allows
any natural language prompt [2]. Both tasks are essential for real-world applications [3]. Recent
progress in semantic segmentation [4, 5] relies on expensive manual annotations, but weak supervision
approaches [6, 7] leveraging contrastive image language pre-training models [8, 9] have emerged.
Referring segmentation has adopted language-specific components [10] based on [8]. Unsupervised
semantic segmentation approaches [11, 12] struggle with complex language prompts, particularly in
referring segmentation tasks (Tab. 1).

Despite contrastive image language pre-training models [8] serving as a foundation for segmentation
tasks [6, 10], diffusion models [13–15] have not been utilized for segmentation with the exception
of [16], which requires expensive compute to train. We ask if pre-trained diffusion models can
associate natural language with relevant spatial regions of an image. Our proposed Peekaboo, based
on a pre-trained image-language stable diffusion model [17], achieves unsupervised semantic and
referring segmentation without having to training any model. Peekaboo employs an inference time
optimization that iteratively updates an alpha mask, converging to optimal segmentation for a given
image and language caption. We propose a novel alpha compositing-based loss for improved learning
of the alpha mask. Our contributions are:

1. Novel mechanism for unsupervised segmentation applicable to semantic and referring
segmentation tasks

2. Demonstrating pixel-level localization information within pre-trained text-to-image diffusion
models
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man with blonde hair in blue shirt and brown pants

bald man wearing glasses with white shirt and black pants

Figure 1: Zero-Shot Segmentation with phrases: We highlight the ability of Peekaboo to ground
complex language prompts onto an image with no segmentation specific training. An off-the-
shelf diffusion model is used with only an inference time optimization technique to generate these
segmentations. If you look closely, you’ll notice the bald man’s arms are segmented - but are not
visible in the photo! Peekaboo has fairly strong shape priors.

girl left in purple
boy in red vest
small girl with striped
bikini
small shirtless boy on
the right

Figure 2: Peekaboo Samples: (left) we apply referring segmentation for each object in an example
image from RefCOCO using custom text prompts listed below the image. (right) We illustrate 6
more examples from RefCOCO using their existing captions, listed left to right for top and bottom
respectively: "baby", "brown cow", "elephant on right", "guy in red", "red jacket", "the front horse".

3. A mechanism for using Stable Diffusion as an off-the-shelf foundation model for segmenta-
tion

4. End-to-end text-to-image generation of RGBA images with transparency, which to our
knowledge has not been previously attempted.

We evaluate our approach on both RefCOCO [18] and modified Pascal VOC [19] (Pascal VOC-C).

2 Related Work

Vision-Language Models: Vision-language models have advanced rapidly, enabling zero-shot
image recognition [20, 21] and language generation from visual inputs [22–25]. Recent contrastive
language-image pre-training models [8, 9] showcase open-vocabulary and zero-shot capabilities,
with extensions for a wide range of tasks [26–33]. Grounding language to images [34, 6] and
unsupervised segmentation [11, 12] have also been explored. Our proposed Peekaboo leverages an
off-the-shelf diffusion model without segmentation-specific re-training and handles sophisticated
compound phrases.

Diffusion Models: Diffusion Probabilistic Models [14] have been adopted for language-vision
generative tasks [35–41] and extended to various applications [42–45]. Recent works [45, 46] sample
diffusion models through optimization. Our Peekaboo utilizes efficient latent diffusion models and is
the first zero-shot method for cross-modal discriminative tasks such as segmentation.
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Figure 3: Overview of Peekaboo Architecture: We illustrate how an input image and random
background are alpha blended to generate a composite image. This image and its relevant text
prompt are processed by our diffusion model based inference-time objective. Iterative gradient based
optimization of the randomly initialized alpha mask converges to a segmentation optimal for the
conditioning text prompt. Note that our diagram shows the alpha mask at an intermediate iteration: at
the initial iteration it is entirely random Gaussian noise.
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Figure 4: Inference Process: Above we show a timelapse of the inference-time alpha mask optimiza-
tion process

Score Distillation Loss: SDL was introduced in DreamFusion [45] and applied to NeRF [47] to
create 3D models. Our work applies it to alpha masks for image segmentation, yielding better
results than previous CLIP-based techniques [48–50]. Like Peekaboo, SDL is also used with Stable
Diffusion in [51–53].

Unsupervised Segmentation: Unsupervised segmentation [54] has evolved from early spatially-local
affinity methods [55–57] to deep learning-based self-supervised approaches [58–62]. LSeg [7] is a
semi-supervised segmentation algorithm because it’s trained with ground truth segmentation masks,
but attempts to generalize the dataset labels to language using CLIP embeddings. Our Peekaboo also
enables grouping aligned to natural language, is open-vocabulary.

Referring Segmentation: Referring segmentation [2, 63, 64] involves vision and language modalities.
Early approaches [2, 65–67] fuse features, while recent works use attention mechanisms [68, 69,
64, 70, 71] and cross-modal pre-training [10]. Large supervised segmentation models [72, 73] have
demonstrated high performance, but they require annotated segmentation datasets. Concurrently,
an unsupervised referring segmentation method [16] has been developed using the same Stable
Diffusion model as us, but it requires significant computational resources, including 5.3 days of
training with 32 NVIDIA V100 GPUs. In contrast, Peekaboo is the first to perform unsupervised
referring segmentation without necessitating any model training, effectively reducing the training
time to 0 days on 0 GPUs.

3 Proposed Method
In this section, we discuss our zero-training approach for unsupervised zero-shot segmentation,
Peekaboo. We formulate segmentation as a foreground alpha mask optimization problem and

3



leverage a text-to-image stable diffusion model pre-trained on large internet-scale data. The alpha
mask is optimized with respect to image and text prompts.

3.1 Background: Score Distillation Sampling
First introduced in DreamFusion [45], Score Distillation Sampling (SDS) is a method that generates
samples from a diffusion model by optimizing a loss function we call score distillation loss (SDL).
This allows us to optimize samples in any parameter space, as long as we can map back to images in
a differentiable manner. We modify SDS to optimize learnable alpha masks and operate with latent
diffusion.

3.2 Overview
Consider an image of a puppy. Its defining region is the foreground (region containing the puppy):
all distinctive characteristics of the puppy are retained even when the background is completely
altered. Peekaboo leverages this idea to iteratively optimize a learnable alpha mask such that it
converges to the optimal foreground segmentation. We use a randomly initialized alpha mask (α) to
alpha-blend the puppy image (x) with different backgrounds (b), generating new composite images
(x̂) as described in Eq. (1):

x̂ = αx+ (1−α)b (1)
The composite image and related text prompt (p) are jointly processed by a pre-trained text-to-
image diffusion model. An SDL based objective building off its output is minimized by iteratively
optimizing the alpha mask. Minimizing this inference-time objective makes each new composite
image similar to the text prompt (e.g. puppy) in latent space. We next discuss this inference-time
objective in detail.

3.3 Inference-time Objective
Peekaboo’s inference-time objective Lp has two components: latent score distillation loss Ls and
alpha regularization loss Lα. The total loss, Lp = Ls + Lα, is called the Peekaboo loss.

Latent Score Distillation Loss or Ls can be conceptually interpreted as a measurement of cross-
modal similarity between a composite image and a text prompt p. The key intuition lies in how
predicted noise from the diffusion model is minimal for samples better matching the conditional
distribution. Peekaboo utilizes Stable Diffusion that operates in a latent space. We adapt standard
SDL to operate within this latent space, hence the term latent score distillation loss.

The Stable Diffusion model jointly processes images and text. Its visual encoder first projects images
to a latent space. This latent vector is then processed by the diffusion U-Net (D) conditioned on
text embedding (from text encoder T ) to produce noise outputs. To measure Ls, we first degrade
latent vector z of composite image x using forward diffusion, introducing Gaussian noise ϵ ∼ N to
z, resulting in a noisy z̃. We then perform diffusion denoising conditioned on the text embedding
with pre-trained D. Our loss Ls is measured as the reconstruction error of noise ϵ, given noisy z̃ and
text embedding T (p) as in Eq. (2):

Ls = MSE (ϵ,D (z̃, T (p))) (2)

where MSE refers to mean-squared loss. Pseudo-code describing Ls in detail is presented in
Algorithm 1.

Alpha Regularization Loss or Lα enforces a minimal alpha mask. Specifically, Lα =
∑

i αi, where
i indexes pixel location in α. Assuming a target is in our image, a trivial way to satisfy cross-modal
similarity (Ls) is to include all pixels. That is, setting α = 1

H×W (all ones array). In this case,
composite image x̂ would satisfy the prompt since x̂ is identical to input image x. To combat this,
we penalize high α values with regularization, discouraging unnecessary pixels from being added.

3.4 Alpha Mask Parametrization
We next discuss the parametrization of our learnable alpha mask. Our experiments indicate that
representing an alpha mask as a simple learnable matrix (referred as raster parametrization) yields
sub-optimal results. To improve this, we apply a bilateral blur to that matrix and then clip it between 0
and 1 using a sigmoid function. This approach, defined raster bilateral parametrization, allows us to
align our generated segmentation masks with the image content at a pixel level, respecting boundaries
between regions present in the image. As a result, we are able to achieve better segmentation. We
also investigate alternative parametrizations in section 3.4.1.
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Algorithm 1 Pytorch style pseudocode for Peekaboo

1 import torch , stable_diffusion as sd
2
3 def segment_image_via_peekaboo(img , prompt ):
4 """ Given an image and text prompt , return an alpha
5 mask that is close to 1 in regions where prompt
6 is relevant and 0 where the prompt is not."""
7
8 alpha = LearnableAlphaMask(img) # nn.Module
9 optim = torch.optim.SGD(alpha.parameters ())

10
11 for _ in range(num_iterations ):
12 peekaboo_loss(img , prompt , alpha ()). backward ()
13 optim.step() ; optim.zero_grad ()
14 return alpha()
15
16 def peekaboo_loss(img , prompt , alpha ):
17 """ Core of our paper. Blends image with random
18 color and returns loss guiding alpha mask."""
19
20 img_embedding = sd.vae.encoder(img)
21
22 background = torch.random (3) # random RGB color
23 composite_img = torch.lerp(background , img , alpha)
24
25 loss = alpha_regularization_loss = alpha.sum()
26 loss += score_distill_loss(img_embedding , prompt)
27
28 return loss
29
30 def score_distill_loss(image_embedding , prompt ):
31 """ Same loss proposed in DreamFusion """
32 timestep = random_int (0, _diffusion_step)
33 noise = sd.get_noise(timestep)
34 noised_embed = \
35 sd.add_noise(image_embedding , noise , timestep)
36 with torch.no_grad ():
37 text_embed = sd.clip.embed(prompt)
38 predicted_noise = \
39 sd.unet(noised_embed , text_embed , timestep)
40 return (torch.abs(noise - predicted_noise )).sum()
41
42 class LearnableAlphaMask(nn.Module ):
43 """ This class parameterizes the alpha mask """
44 def __init__(self , image):
45 _, H, W = image.shape
46 self.alpha = nn.Parameter(torch.random(1, H, W))
47 self.img = image
48 def forward(self):
49 alpha = bilateral_blur(self.alpha , self.img)
50 return torch.sigmoid(alpha)

3.4.1 Peekaboo’s Bilateral Filter
In this subsection, we provide a detailed exploration of the bilateral filter, briefly introduced above.

A standard bilateral filter is a non-linear filter that smooths an image while preserving its edges. It
does this by considering both the spatial distance and color differences between pixels, giving higher
weight to pixels that are close in space and have similar colors.

We apply a modified version of this filter onto the learnable alpha mask. This filter operates on
the alpha mask tensor and modifies it using the color and spatial information of the image to be
segmented. This filter is applied at every step the alpha optimization process, as opposed to during
post-processing.

The intention behind using such a filter is to ensure that our generated segmentation masks adhere to
the image content at a pixel level from early iterations, leading to improved segmentation in the end.

In this section, we present results, both quantitative and qualitative for our downstream tasks of
segmentation. We first go over peekaboo and our baseline algorithms, then talk about the specific
experiments.

3.5 Baselines
Following [2], we build a baseline that predicts the entire image as the segmentation tagged Random
(whole image). For our next baseline, we apply the weakly-supervised segmentation method GroupViT
[11]. Note that GroupViT is intended for text conditioned segmentation and is trained on datasets
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Figure 5: Visual Variant Comparison: This figure gives qualitative comparisons between Peekaboo
variants on a single image from VOC-C with the prompt “car”.

similar to those used by Stable Diffusion (i.e. our off-the-shelf diffusion model). Our last baseline,
LSeg [66] is a semi-supervised segmentation alogorithm that has seen the VOC dataset during its
training.

3.6 Peekaboo Variants
We our experiments we showcase several different variants and ablations of Peekaboo. Fig. 5 gives a
qualitative comparison between these variants.

“RGB Bilateral” is the main, default Peekaboo algorithm described in Section 3. For more details
on these methods, please see the appendix. “CLIP”: this variant substitutes score distillation loss
for a CLIP-based [8] loss similar to [49]. All of the other variants are changes solely to the alpha
mask parametrization. “Raster”: this ablation skips the bilateral filter, and thus optimizes the alpha
map pixel-wise. This yields worse performance than any other parametrization. “Fourier”: this
variant parametrizes the alpha mask with a fourier feature network [74], inspired by neural neural
textures in [75]. This variant does not use a bilateral filter, but yields better results than a basic matrix
parametrization. It tends to suffer from hallucinations more than other variants. “Fourier Bilateral”:
Just like the Fourier variant, except with the bilateral filter on top. This yields higher performance
than the fourier feature network alone. “Depth Bilateral”: Uses a depth map generated using the
off-the-shelf monocular depth estimation model MIDAS [76] to guide the bilateral filter instead of
differing RGB values. Intuitively, it means that pixels that are close in 3d space will have similar
alpha values. This variant performs better than the main Peekaboo algorithm, and outperforms Clippy
[12] on both COCO and VOC-C.

4 Experiments
4.1 Referring Segmentation
We first present our quantitative evaluations for referring segmentation in Tab. 1. These results
presented in Tab. 1 showcase impressive performance of Peekaboo.

The RefCOCO dataset is farily challenging, as the prompts are complex refer to a specific portion of
the image. Some example prompts: “giant metal creature with shiny red eyes”, “bartender at center
in gray shirt and blue jeans”, and “suitcase behind the zebra bag”.

GroupViT is a key comparison to our work, given how it is trained on similar noisy image-caption
pair from internet scraped data. And on this dataset, Peekaboo outperforms GroupViT - a model that
was trained specifically for segmentation on 16 NVIDIA V100 GPUs for two days. LSeg was trained
for segmentation and outperforms Peekaboo, but we would like to reiterate - Peekaboo simply utilizes
a diffusion model originally trained for text-to-image generation, and adopts it to segmentation with
no re-training.

4.2 Semantic Segmentation
We present evaluations on the VOC-C dataset in Tab. 2. Our modified Pascal VOC dataset, VOC-C,
was created by selecting and cropping images from the original VOC2012 dataset with single subjects
larger than 128x128 pixels.

The text prompts VOC-C dataset relatively simple. They’re simply the names of the dataset’s 20
classes. Some examples: “cat”, “dog”, “aeroplane”, “bird” - etc.

While Peekaboo doesn’t outperform Clippy, GroupViT or LSeg, it has fairly competitive performance.
In fact, Peekaboo’s “Depth Bilateral” variant even outperforms Clippy. And to reiterate, unlike these
baselines, Peekaboo requires no training whatsoever.
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Type Method Prec@0.2 Prec@0.4 Prec@0.6 Prec@0.8 mIoU

Baselines
Random .141 .022 .003 .000 .102

GroupVIT [11] .212 .075 .020 .002 .112
LSeg [7] .512 .212 .051 .008 .235

Peekaboo
Variants (ours)

Depth Bilateral .359 .135 .037 .003 .204
RGB Bilateral .318 .099 .018 .002 .163

Table 1: Referring Segmentation Evaluation. We present results on the RefCOCO dataset. Numbers
reported are precision and mIoU values for our method and baselines. Once more, unlike the others,
Peekaboo is without any segmentation training.

Type Method Prec@0.2 Prec@0.4 Prec@0.6 Prec@0.8 mIoU

Baselines

Random .670 .198 .032 .012 .281
Clippy [12] .757 .459 .263 .049 .539

GroupViT [11] .862 .778 .602 .205 .578
LSeg [7] .952 .897 .758 .311 .678

Peekaboo
Variants (ours)

Raster .756 .323 .103 .012 .340
CLIP .918 .488 .093 .023 .430

Fourier .862 .598 .231 .084 .454
Bilateral Fourier .845 .608 .281 .123 .470
Depth Bilateral .929 .707 .455 .187 .551
RGB Bilateral .892 .709 .331 .130 .520

Table 2: VOC-C Semantic Segmentation Evaluation. Our results on the VOC-C dataset report
mIoU values for our method and GroupViT baseline. Numbers for our baselines are obtained running
their respective pre-trained models. Numbers reported are precision and mean-IoU values.

4.3 Qualitative Results

Figure 6: Varying granularity (left): Another feature of Peekaboo is its ability to segment at
differing granularity. While the model performance in such situations is quite sensitive to the caption,
we highlight how subtle variations to the caption allows us to localize relevant regions of image
accordingly. Real-world applications (right): Peekaboo can localize real-world objects from
arbitrary captions. We highlight how each localization successfully captures the relevant region with
a clear overlap over each object centroid. This is particularly useful in applications such as robotics
where interaction with arbitrary objects defined by natural language can be valuable.

In this section, we present some more qualitative evaluations of our proposed method. In Fig. 7, we
show some randomly selected examples where Peekaboo successfully localizes regions of interest
based on popular cultural references. We hypothesize that our Peekaboo is able to understand such
a wide vocabulary due to the strength of the pre-trained diffusion model, which was trained on an
interet-scale dataset. We also analyze real-world image captured by our camera in Fig. 7.
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Figure 7: Peekaboo is truly open vocabulary: We illustrate examples where Peekaboo is able
to localize various regions of interest defined by references from popular culture. All of these are
examples where the model has been able to correctly localize (identified region centroid or high IoU
with correct region). The caption below each image is used to generate the same color mask. An
interesting behavior of our model is its localization to the region most defined by the accompanying
text caption. For example, in the case of Emma Watson in the top row second figure, it is visible how
Peekaboo localizes on her face and body instead of her frock (see Fig. 6 for more on this).

Another characteristic of this open vocabulary nature that endows our model is to probe image regions
at varying granularities. We illustrate this behavior in Fig. 6 where sub-regions of a single person can
be localized based on different text captions.

5 Generating Images with Transparency
Peekaboo loss can do more than just segment images - it can generate images with transparency.
In fact, it does this quite reliably - giving detailed alpha masks along with each generated image.
Images with transparency are incredibly useful for many domains, such as graphic design assets and
video game textures. However, to the best of our knowledge, all current text-to-image models such as
[38][77][40][37] have trained strictly on RGB images, and are not designed to generate images with
an alpha channel.

Despite the absence of such models, we can generate RGBA images by iteratively optimizing an
RGB image jointly with an alpha mask using Peekaboo loss. Pseudocode for this process is given in
Algorithm 2, which builds on Algorithm 1.

Algorithm 2 Pytorch style pseudocode for transparent RGBA image generation

1 #Continued from Algorithm 1
2 def text_to_rgba_image(prompt ):
3 """ Given a text prompt , generate a new RGBA image
4 (An image with an alpha transparency mask)"""
5
6 alpha = LearnableAlphaMask () # nn.Module
7 image = LearnableRGBImage () # nn.Module
8 optim = torch.optim.SGD(alpha.parameters (), image.parameters ())
9

10 for _ in range(num_iterations ):
11 peekaboo_loss(image(), prompt , alpha ()). backward ()
12 optim.step() ; optim.zero_grad ()
13 return image(), alpha()

Example images can be found in Fig. 9 and Fig. 8.

This process of creating images via optimization is very similar to [51], which also uses score
distillation loss to optimize 2d images. However, it also suffers from some of the same caveats.
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Figure 8: Image Generation Timelapse: Above we show a timelapse of the RGBA image generation
process. The prompts from top to bottom are “avocado armchair”, “globe”, “pikachu”, “cat in a box”.
More examples are in the appendix. The images are on checkerboards to illustrate transparency.

"A dog in a pink dress"

"A dog in a mecha suit"

"A rainbow toy dragon"

"Two skeletons kissing"

"Cyberpunk girl with goggles"

Figure 9: Image Generation Examples: Above we show five more examples of RGBA images
generated with this method, placed on different backgrounds. Note how Peekaboo successfully
separates high-frequency details, for example, between rib bones and the background.

6 Conclusion
In this work, we established how text-to-image diffusion models trained on large-scale internet data
contain strong cues on localization. Note that their training process contains no explicit modelling
of localization. We then propose a novel inference-time optimization technique that can extract this
localization knowledge and apply this to downstream referring and semantic segmentation tasks. In
particular, we perform such segmentation with no segmentation-specific re-training of the diffusion
modell, leaving its weights (and therein all strengths of the model) intact.

The major limitation of our work is its reliance on a large diffusion model pre-trained on internet-scale
data. Given the difficulty of training such diffusion models under usual academic settings (resource
constraints), approaches building off Peekaboo must rely on publicly available diffusion models.
Moreover, all flaws and biases contained within such diffusion models [78] as well as internet-scale
datasets used for training [79] will be transferred to Peekaboo.
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PEEKABOO: TEXT TO IMAGE DIFFUSION MODELS ARE ZERO-SHOT SEGMENTORS

A Intuition
In this section, we aim to convey some intuition behind Peekaboo. We explore the reasoning behind
each component used and explain why Peekaboo works as it does. The key underlying idea is deriving
gradients from a conditional diffusion model to guide a mask generation process.

The diffusion model conditioned on a text caption processes a noisy input to generate a gradient that
moves the input toward the target image. This gradient is what we use to guide our learnable alpha
mask. We use Stable Diffusion [17], a text-to-image diffusion model trained on billions of internet
images. This means the model will target to generate images from that image distribution relevant to a
text caption. The noisy input is the image to be segmented alpha blended with a uniform background.
Iteratively, it will attempt to update this input to a target distribution image relevant to the text caption.
Updating the regions of the image most relevant to the text caption makes more sense. Thus, regions
of the image relevant to this text caption will have stronger gradients than regions irrelevant to a
prompt. For example, consider an image of a dog sitting on a couch. When prompted for “a dog”,
the couch is irrelevant to the prompt and has fewer gradients focused on that region. There is less
incentive to remove the alpha mask in that location, and without incentive, it defaults to null due to
our alpha regularization loss (Sec. 3.3). This results in the alpha mask focusing on the dog region.

While this results in our desirable behavior, we observe that it converges to the region most relevant
to the text prompt. For example in Fig. 6, in segmenting Emma Watson, it attempts to focus on
the region that mostly makes the image look like her, which could be a sub-portion of the human
region (in accordance with the accepted notion of segmenting a human). While Harry Styles could
wear a dress, he would still remain Harry Styles. However, only Emma Watson can have her face.
Therefore, Emma Watson’s face is more essential to the prompt Emma Watson; hence it prioritized
segmenting that region while ignoring the dress. In a way, one could view this as a new definition of
segmentation; Peekaboo localizes the essence of an object described by language.

B Ablations
In this section, we present some ablations on components of our inference time optimization.

B.1 Alpha Regularization
The alpha regularization term Lα (see Sec. 3.3) is important, because it prevents Peekaboo from
including irrelevant parts of the image in the alpha mask. By adding this alpha penalty, we effectively
tell Peekaboo to create a minimal alpha mask. In practice, the Lα term should be scaled by a constant,
which in our experiments was λα = .05 (the alpha regularization coefficient).

In this section, we perform ablations where we vary this λα term. We play around with the alpha
regularization coefficient λα, scaling it by different factors. For example, “2x” means a λα that is
“2x” the normal value, which is .05× 2 = .1.

We can view the results visually in both the transparent image generation and segmentation contexts.
In the transparent image generation task Fig. 10, we see that the generated images are more transparent
when λα is large. Likewise, in the segmentation task Fig. 11 we can see that Peekaboo generates
smaller masks when λα is high.

B.2 Implicit neural representations
In Peekaboo’s “Fourier” and “Bilateral Fourier” variants, as well as our transparent image genera-
tions, we use the neural-neural texture formulation from [75] to represent our learnable alpha masks
(and RGB channels in transparent image generations, and foreground/background in our analogous
example in Appendix E). The alternative to using this implicit neural representation is learning the
pixels directly by representing them as a learnable tensor of dimensions (H,W,C) for C = 1 in
mask and C = 3 in RGB images. In this ablation, we explore how the alternative compares against
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Prompt: ”MacDonalds French Fries”

Figure 10: We display four transparent-image generation timelapses for the prompt “MacDonalds
French Fries” with varying amonuts of alpha regularization. As we increase alpha regularization,
Peekaboo tends to generate images with less alpha. In this case, it means less french fries will be
generated. Conversely, when the λα is eliminated (aka λα = 0), more french fries than normal are
generated.

1x 2x 5x 10x.5x.1x0x

Increasing Alpha Regularization Coefficient
Input Image

”Motorcycle”

Figure 11: The alpha regularization term plays a large role when using Peekaboo to segment images.
If λα is too large (on the far right), the entire image might be ignored. Conversely, if λα is too small,
tons of background details are included.

−−−−−−−→
Iteration

Figure 12: Ablation on implicit neural repre-
sentation: In Peekaboo’s “Fourier” and “Bilat-
eral Fourier” variants, as well as our transparency
image generations, we utilize neural-neural tex-
tures [75], which use Fourier feature networks
[80]. Here we compare against the alternative
of direct pixel-level representations for RGB im-
age generation. (top) The first row shows images
generated using implicit representations while the
second row shows those of pixel-level ones. The
two graphs below correspond to pixel variance (y-
axis) plotted against iteration (x-axis) for implicit
and pixel-level representation respectively from
left to right.
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Figure 13: Visualizing implicit neural representation: We illustrate
another example of generating an image using our implicit neural repre-
sentation (top) vs pixel-wise representation (bottom). To the left we show
a graph of pixel level variance (y-axis) plotted against iteration (x-axis)
for the implicit representation case. In this example, we highlight how
the characteristics of the cat (shape, location) is consistent in the pixel-
wise case from early iterations. However, in our implicit (parametric)
representation, various characteristics of the cat (e.g. size, position) alter
throughout the iterations. This latter kind of behaviour is also favourable
to our task of mask generation.

our selected approach. We highlight the two main drawbacks of pixel-level representations as 1)
noisy outputs and 2) bad convergence.

We illustrate this behavior in Fig. 12. First, we attempt to generate images using each of the two
image parametrizations through score distillation sampling. We show that neural representations
lead to less noisy outputs. The top two rows in Fig. 12 correspond to these. Clearly, the neural
representation in the first row leads to a less noisy output in comparison to the alternative. Next, we
explore the convergence behavior of each approach. To analyze this, we utilize the images being
generated and measure their variance at the pixel level. While a natural image contains some variance
in pixel space, this is a finite value, and our run-time optimization should ideally converge at this
variance. However, utilizing a pixel-level representation results in continuously increasing variance
in the image pixels, leading to overly saturated images (dissimilar to a realistic image) and in the case
of masks, lack of convergence. This is illustrated in the two graphs at the bottom of Fig. 12. We also
highlight how in these graphs of Fig. 12 the variance of the implicit representation converges early on
at around 50 iterations (left) while that of the pixel-wise representation (right) fails to converge even
after 350 iterations.

B.3 Bilateral Filter
In Sec. 3.4.1, we discussed Peekaboo’s use of a bilateral filter as part of the image parametrization. In
this section, we provide a visualization of this filter. A closer look at the noisy mask in row 3 column
1 of Fig. 14 will show vague outlines of a skeleton within the noise; this is a result of the modified
bilateral filter being applied to the mask.

C Optimization Details
In this section, we discuss all details relevant to our proposed inference time optimization that
generates segmentations. In order to generate a single segmentation, we run it for 200 iterations, a
learning rate of 1e− 5, and stochastic gradient descent as the optimizer.

Additionally, we apply the modified bilateral blur operation, conditioned on the image to be segmented,
onto the learnable alpha masks at initialization, which results in faster and better convergence. Here
we use a blur kernel of size 3 with 40 iterations (multiple iterations increase the effective field of view
for a kernel).

D Limitations
We also acknowledge that our proposed Peekaboo contains various limitations and shortcomings. A
key drawback is its failure cases that result in a hallucination of the text prompt using some random
background region, i.e. it uses the background texture to create a region shaped like the underlying
object described by the text. We illustrate this behavior in Fig. 15. This is clearly visible in the
three right-most examples (bird, cat, dog). We also note that such behavior is more common when a
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Figure 14: Ablation on bilateral filters: The bilateral filter improves segmentation alignment with
object boundaries, resulting in more accurate and precise segmentations. In this figure, we show a
timelapse of the alpha mask optimization process over time from left to right, for both Peekaboo
variants “Fourier” and “Bilateral Fourier” (see Sec. 3.4.1). The bottom two rows show a timelapse
of the alpha maps, and the top two rows show a timelapse of those alpha maps overlaid on the original
image to help visualize their accuracy. The first and third rows depict the “Fourier” variant, while
the second and fourth rows depict the “Bilateral Fourier” variant.

simple (often one word) text caption is used. Another failure is the addition of unnecessary parts to
the region of interest. For example, in column one of Fig. 15, while the knife is coarsely localized,
Peekaboo also incorrectly creates a handle for it using a slice of bread from the background. The
model also sometimes fails to converge entirely, as illustrated in the second column, where despite
localizing the eyes, the generated mask also holds onto outlines of the image foreground object.

While we hope to address these issues in future work, we also reiterate that despite these limitations,
Peekaboo is a first unsupervised method that is able to perform open vocabulary segmentation using
arbitrary natural language prompts.
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Figure 15: Limitations and failures of Peekaboo: We illustrate examples where Peekaboo fails to
properly segment the region of interest. The prompts for these examples from left to right are: knife,
eyes, bird, cat, dog. We note how a major issue is the tendency of Peekaboo to hallucinate the
shape of the object denoted by the text caption.

E Analagous Example

Figure 16: Images generated from Stable Diffusion: This data distribution is quite different from
the distribution of natural images, rarely containing objects in non-central locations of the image.
This bias is carried through to Peekaboo, which is why Peekaboo is best at segmenting objects near
the center of an image. These images were generated by running prompts through stable diffusion
v1.4, such as “a teddy bear in times square”, and using DDPM with a guidance scale of 7.
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Figure 17: Can diffusion models separate foreground and background? Stable diffusion was
only trained on RGB images. However, observing the often clean boundaries between objects
in generated images, it begs the question: can we use these boundaries to generate images with
transparency? In this figure, we conduct a self-contained experiment that answers this question:
yes. We overlay 6 learnable foreground images on top of 5 learnable background images using 6
learnable alpha masks, to get a total of 30 learnable composite images. Each of these composite
images has a composite caption, created by combining the foreground prompt with the background
prompt. For example, the image created by combining background #1 and foreground #1 is
accompanied by the prompt "a bulldozer by a castle". We optimize each of these 30
composite cells with score distillation loss (see Sec. 3.1) until each foreground, background and
alpha mask has been learned. Differences between this experiment and Peekaboo are minimal: in
Peekaboo, we only optimize the alpha masks, whereas in this analogous experiment we optimize
everything.

In order to explain the intuition behind Peekaboo, we show results of analogous experiment that
helped to inspire it. This analagous algorithm is not exactly Peekaboo, but it is very similar and is
helps explain the main idea behind how Peekaboo works.

We first examine a stable diffusion model [17] pre-trained on LAION-5B [81]. Our goal is to explore
whether internal knowledge of these models regarding boundaries and localization of individual
objects can be accessed and subsequently utilized for tasks such as segmentation. We focus on the case
of generating a single synthetic object in some background and attempt to generate an accompanying
alpha mask that demarcates the region belonging to the foreground object. We utilize score distillation
loss (see Sec. 3.1) as a cross-modal similarity function that connects a text caption describing a
foreground object to the image region it is located. Using this similarity as an optimization objective,
we generate the foreground, background, and alpha mask.
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Figure 18: Extended visualization of analogous experiment

Results obtained from this process are illustrated in Fig. 17. While our method is able to generate
good segmentation masks relevant to the foreground, we note that generated images are unrealistic.

We highlight that generated image quality is indifferent to the segmentation component, where we
generate single-channel alpha masks. The rest of our work is focused on how this technique can
be leveraged for segmenting stand-alone images, i.e. images beyond those generated by a diffusion
model. In essence, we attempt to segment real-world images with free-form text captions.
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F More Results

Figure 20: Our results on RefCOCO-C. For each sample we demonstrate the prompt text(title), input
image(left), our output alpha mask(middle), and the image segmented by the mask(right)

21



Figure 21: Our results on Pascal VOC-C. For each sample we demonstrate the prompt text(title),
input image(left), our output alpha mask(middle), and the image segmented by the mask(right)
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Figure 22: Peekaboo’s segmentation results on various images, including pop references such as
Avatar the Last Airbender and AI-generated images of imaginary objects that don’t exist such as
avocado armchairs. Prompt and input image are on the left, and the alpha mask output is on the right.
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Figure 23: Part 1/2. Peekaboo can generate images with transparency masks! Continuing from Fig. 9,
we display timelapses of the transparent image generation task described in Sec. 5. The prompt for
each image is to its right.
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Figure 24: Part 2/2. Peekaboo can generate images with transparency masks! Continuing from Fig. 9,
we display timelapses of the transparent image generation task described in Sec. 5. The prompt for
each image is to its right.
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