

Peekaboo: Text to Image Diffusion Models are Zero-Shot Segmentors

<u>Ryan Burgert,</u> Kanchana Ranasinghe, Xiang Li, Michael Ryoo

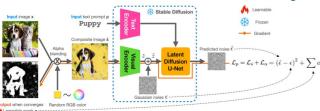
ryanndagreat.github.io/peekaboo

Goal: open-vocabulary zero-shot segmentation, without any new training. Given an image and a prompt, Peekaboo aims to segment that region.

bald man wearing glasses with white shirt and black pants

Peekaboo segments images by iteratively optimizing an alpha mask

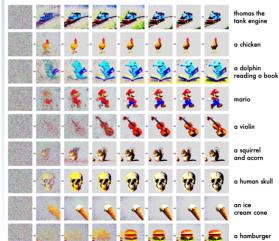
Here's the full inference pipeline! There is no training pipeline. Peekaboo uses off-the-shelf stable diffusion with no further training.



Alpha Regularization and Parametrizations

Proof image Image

Peekaboo can also be used to generate images with transparency (An RGB image and mask are jointly optimized with Peekaboo loss)



Simple Peekaboo Pseudocode

Peskabos Peskabos Peskabos (image, prompt): alpha = torch.rand(image.height, image.width) optim = torch.optin.SO(alpha) for _ in range(num_iterations): losspeekaboo_loss(image, prompt, bilateral_blur(alpha,image)) loss.beckerar(); optim.sten()

return bilateral_blur(alpha, image)

def peekaboo_loss(image, prompt, alpha): #Core of our paper. Blends image with random #coler and returns loss guiding alpha mask. background = torch.rand(3) # random RGB color composite_img = torch.leng(background, image, alpha) los = alpha.regularization_loss = alpha.sm() raturn loss_distlikiten_loss(image, prompt)

def score_distillation_loss(image , prompt):
 # Same loss proposed in DreanFusion
 timestep = random_int(0, _diffusion_step)
 noise = diffusion.sqt_noise(timestep)
 noise, image = diffusion.add_noise(image, noise)

with torch.no_grad(): pred_noise = diffusion.unet(noisy_image, prompt

return (noise - pred_noise).abs().sum()

def text_to_rgba_image(prompt):

Generates an RGB image and alpha mask from prompt alpha = torch.rand(image_height, image_width) image = torch.rand(3, image_height, image_width) optim = torch.optim.SGD(alpha, image]) for _ in range(num iterations):

los = in range(nom_iterations): loss = peekaboo_loss(image, prompt, alpha) loss.backward(); optim.step() return image, alpha

Quantitative Segmentation Results

Random	.141				
		.022	.003	.000	.102
GroupVIT [11]	.212	.075	.020	.002	.112
LSeg [7]	.512	.212	.051	.008	.235
Depth Bilateral	.359	.135	.037	.003	.204
RGB Bilateral	.318	.099	.018	.002	.163
	LSeg [7] hepth Bilateral	LSeg [7] .512 hepth Bilateral .359 GB Bilateral .318	LSeg [7] .512 .212 hepth Bilateral .359 .135	LSeg [7] 512 .212 .051 bepth Bilateral .359 .135 .037 GB Bilateral .318 .099 .018	LSeg [7] .512 .212 .051 .008 hepth Bilateral .359 .135 .037 .003 GB Bilateral .318 .099 .018 .002

Туре Method Prec@0.2 | Prec@0.4 | Prec@0.6 | Prec@0.8 | mIoU Random .670 .198 .032 .012 .281 .757 .459 .263 .049 .539 Clippy [12] Baselines .205 GroupViT [11] .862 .778 .602 .578 678 LSeg [7] 103 012 340 Raste 756 323 .023 .430 CLIP .918 488 .093 .450 Peekahor Fourier 862 598 .231 084 .470 Variants (ours) Bilateral Fourier .845 .608 .281 .123 Depth Bilateral 929 .707 455 187 .551 RGB Bilateral .892 .709 .331 .130 520

Cropped Pascal-VOC Dataset

Qualitative Segmentation Results

